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Energies of a Kinked Crack Line

This article finds the energy of slightly kinked crack fronts in order to find the
rate at which thermal fluctuations cause cracks to creep in three-dimensional
settings.
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A singularity can cut through seemingly impenetrable regions, leaving open
space behind. The space Leo Kadanoff gave me was the opportunity to
begin studying fracture in the spirit of moving interface problems(1) during
two years in Chicago. This article will discuss some new statistical features
of the problem, motivated in part by recent experiments and computer
simulations.

There is a number of pieces of previous work leading into these
calculations. The first is the discovery of lattice trapping by Thomson(2, 3)

A crack in a two-dimensional crystal can be trapped at a given location for
a range of externally applied stresses. When external stresses place the
crack at the Griffith point, the net energy required for it to progress by one
lattice spacing is zero. In order to move ahead, however, the bond ahead
of the crack has to be raised above the breaking point, requiring temporary
addition of extra energy, which then is recovered as atoms throughout the
system relax to their final configuration. One might estimate that the height
of the lattice trapping energy barriers should be comparable to energies
involved in snapping bonds. These energies are in turn comparable to the
energy of melting, leading to the prediction that cracks should only be able
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to creep quickly past the energy barriers that bind them near the melting
temperature.

This estimate is rather hasty, and it has long been recognized that the
way in which a crack creeps actually involves a complicated progression of
kinks moving along the crack surface.(4) Crack creep therefore requires a
study of the energetics of kink motion. Kinks have been studied numeri-
cally,(5) some statistical consequences of having many of them have been
worked out,(6) they have been modeled by a population of dislocations,(7)

as continuum excitations(8) and finally have been treated in atomistic
models of increasing complexity.(9–12) The calculations of ref. 12 are par-
ticularly similar to the calculations in this paper, but do not proceed in
quite the way needed to answer some questions that have recently arisen
in molecular dynamics simulations and experiments.

A brief summary of the new findings is as follows:

1. Lattice trapping has interesting implications for crack dynamics.
In a crystal at temperature 7^=0 cracks should be incapable of steady
motion at any velocity v between 0 and a lower critical value on the order
of 20 % of the Rayleigh wave speed. For a crack in silicon opening a (111)
plane along [110] the minimum allowed velocity is predicted to be
1500 m/s.(13) This phenomenon can be referred to as a velocity gap.(14)

2. J. Hauch has been fracturing silicon along precisely this plane in
the laboratory. The experiments are still in a preliminary stage, but seem
to indicate that crack motion at any speed between 0 and 1500 m/s is
possible. These experiments are at room temperature.

3. D. Holland has performed molecular dynamics simulations of
cracks along this plane at a sequence of increasing temperatures. The
velocity gap vanishes at a temperature of around 150 K.

A tentative conclusion to draw from these observations is that thermal
fluctuations on the order of 150 K are adequate to alter completely the
dynamics of low-velocity cracks in silicon. The question to settle is how this
claim can be true if the relevant energy barriers are on the order of the
melting temperature of 1683 K. The answer I will propose is that one
cannot afford to be hasty in estimating the energy barriers a crack actually
faces. When the geometry by which the crack moves forward is properly
taken into account, the barriers are greatly reduced. Just as a two-dimen-
sional crack in a three-dimensional body provides a particularly efficient
way to sever the object, so a one-dimensional crack traveling along the
edge of a two-dimensional crack front provides a particularly efficient way
for the crack to advance. Figure 1 shows the geometry of crack motion.
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A general framework has previously been worked out to study ther-
mally-driven transitions in Hamiltonian systems, and applied to a one-
dimensional model of a crack.(15) According to this formalism, transitions
can be of two types.

The first type is described by transition-state theory. In this framework,
the system begins in an initial state, moves upwards in energy to a trans-
ition state, and finally descends to a final state. The transition state needs
to have three properties:

1. The transition state is a stationary solution of the equations of
motion. All atoms are in equilibrium, typically, an unstable equilibrium.
Call the energy of this configuration Es.

2. There exists a path through configuration space where the energy
of the system constantly diminishes that takes it from the transition state
to the initial state.

3. Similarly, there exists a path through configuration space where
the energy of the system constantly diminishes that takes it from the trans-
ition state to the final state.

If the energy of the initial state is Et, then in this approximation the
probability of moving from initial to final states is proportional to
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According to the general formalism of ref. 15, it is possible to have
transitions between initial and final states that simply do not fit within this
framework, particularly when the final state is something dynamical like a
running crack, rather than static. It is extremely likely that thermal creep
of cracks is of this type for a certain range of loading. However, in view of
the complications involved just in following through the possibilities
afforded by transition state theory, I will ignore this possibility here, and
will focus simply upon finding the minimal set of energy barriers a crack
must surmount in moving from top to bottom in Fig. 1. Rather than
moving immediately to elaborate atomic interactions of the sort employed
in molecular dynamics simulations,(13) I will focus upon a simple model
where everything can be worked out by hand. The results suggest the sorts
of possibilities that will have to be considered in more realistic settings.

Most of this paper will be devoted to explaining details of the calcula-
tions, but the end results are fairly simple, and can be displayed even before
the model is described in detail. The variable A is a dimensionless control
parameter that characterizes how hard a crack is being pulled. It equals 1
when the system has been strained just enough to make crack motion
energetically possible, and increases beyond 1 as the system is strained
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Fig. 1. Geometry of crack motion, showing a crack moving forward by one lattice spacing
through the spreading of a kink. On the left are three-dimensional images of kinks of various
lengths, in the center a close-up view of the broken bonds, while on the right is a schematic
view of the crack front as seen from above.
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Fig. 2. Energy of kink configurations as a function of number M of broken bonds, for
various values of loading parameter A. Values of energy function at M+ 1/2 show energy
needed to bring bond M to snapping point. Computations use Eqs. (26) and (29) with
N= 1000 and K=512 (see Appendix).

further. Figure 2 shows the energy of crack-line kinks as a function of
length for many different values of A. The energies are calculated for
integers and integers + 1/2. For an integer l, the function shows the energy
of an equilibrium kink configuration of length l, while for l+ 1/2, the func-
tion shows the energy barrier separating the kink of length l from the kink
of length l+1. For A < 1.32 a kink of length M must always surmount
some energy barrier in order to become a kink of length M+ 1, no matter
how large M may be. For A > 1.32 this statement is no longer true, and
beyond some critical length Mc the kink will begin to run spontaneously
along the crack like. At A K 1.63 any kink longer than 1 atom wide runs
spontaneously, and at AK, 1.91 the straight crack line is linearly unstable
and begins to run all along its length at once.

In accord with the formalism of ref. 15, the probability of surmounting
many energy barriers in sequence is the product of probabilities for sur-
mounting the individual barriers. The total probability for a crack to
advance a distance of one lattice spacing is therefore given by adding up all
the activation energies in the corrugated function of Fig. 2. Figure 3 gives
the total activation energy Elot(A) computed in this way for crack advance
as a function of A.

Because for A<1.32 kinks of all lengths have to surmount energy
barriers in order to elongate, the activation energy is proportional to
system width along m up to A = 1.32; in fact, the kink would grow in
length at some slow rate produced by thermal fluctuations, and the wider
the sample along m, the slower the net motion of the crack along l. Making
a definite prediction in this regime is tricky. If one picks any given system
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Fig. 3. Energy barriers to overcome in sending crack line ahead one lattice spacing. Solid
like shows maximum energy that must be achieved, while dashed line shows sum of all
upwards-moving parts of the energy surface. Computations using N= 1000, and K= 512 (see
Appendix). Energy to break one bond is 2.

size and sends temperature to zero, then the most likely way for the crack
to creep forward is by the motion of a single kink. However, if one picks
any given low temperature and makes the system arbitrarily large then the
most likely way for the crack to creep forward will involve multiple kinks
forming simultaneously at exponentially large separations. In any event,
the prediction of such large activation energies is almost certainly incorrect
and arises because attention has been restricted to configurations of the
transition state type. The crack can probably find a better way to advance
by making a transition to a dynamical state where the kink runs at a rate
on the order of the sound speed, rather than by waiting for a huge number
of small thermal fluctuations to take it over barriers one at a time. This
hypothesis should be checked with the general formalism of ref. 15, but will
involve a very large numerical computation that has not been carried out.
However, these ideas can be taken into account in a approximate way by
assuming that once a crack rounds the top of one of the corrugated curves
in Fig. 2 it will find a way to tumble over the remaining small barriers
without further hindrance. In that case, the relevant energy barrier would
be the highest point on each curve in Fig. 2. This quantity is also plotted
in Fig. 3.

Once A exceeds 1.32, the total activation energy is found to be finite,
and drops rapidly. By the time A has reached 1.5, the total energy needed
for a whole crack line to advance is only one-tenth the energy needed to
break a single unstrained bond. This observation provides an explanation
in principle for the molecular dynamics calculations showing that crack
creep merges seamlessly with dynamic fracture at temperatures on the



order of 100 K. It is only suggestive. The true energy surface of atoms inter-
acting with Stillinger-Weber potentials can numerically be analyzed in an
identical fashion, but this task also has not yet been carried out.

A very simple model of three-dimensional crack lines is provided by
linking side-by-side many copies of a one-dimensional model of fracture,
and has been depicted in Fig. 1. The dynamics of this one-dimensional
model has been discussed quite extensively in ref. 14, and its statistical
mechanics in ref. 15. Equilibrium solutions of many side-by-side copies
must obey

since just enough energy is stored per lattice site to snap bonds when A = \.
The great advantage of snapping-bond potentials is that nonlinear

operators such as in Eq. (2) can be converted instantly into linear opera-
tors by choosing a particular crack geometry. Suppose one has a crack
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2. MODEL

Here R = (l,m) ranges over a two-dimensional square lattice, and S ranges
over the four nearest-neighbor vectors (1,0), ( — 1,0), (0, 1) and (0, —1).
The function ug gives the height of a mass point at each lattice location.
The parameter UN provides the driving force for crack motion, since it
pulls every mass point upwards, while the parameter N should be thought
of as a large number roughly representing the ratio between the height of
a macroscopic strip and a lattice spacing. The computations reported in
this paper use N = 1000. The only nonlinearity in Eq. (2) is provided by the
Heaviside 6 function, which causes the bond between the mass at u& and
its mirror image at – u$ to snap when u^> 1. Other bonds are not allowed
to snap in this model, no matter how long they become. The energy needed
to snap a single bond is 1/2×Force×Distance =1/2×2×2 = 2, while the
energy stored per lattice site far ahead of the crack tip is 2U2

NI{2N+ 1), the
leading factor of 2 coming from the fact that both upper and lower halves
of the system store energy. For this reason, the proper dimensionless
measure of loading is



configuration {w0} where u%> 1 for all R = (l, m) with / < 0 , and u%< 1 for
all l>0, as in Fig. 1(A). Let

where

3. GREEN'S FUNCTIONS
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Thomson(3, 12) has emphasized the value of Green's functions in dealing
with fracture problems, and they provide the main tool for all the analysis.
The Green function for L° satisfies

where I here means the identity operator. Once G° has been found, then

The actual form of G° is of no particular interest, and a description of how
it may be computed is relegated to an Appendix.

The task in this article is to take configurations such as Eq. (8) and to
begin selectively snapping extra bonds along the crack line. Finding an
equilibrium solution after breaking the bond at ^ = (0, 1) means solving
the equilibrium problem

where

For this geometry, any solution of Eq. (2) is a solution of the linear
problem, expressed in Dirac notation,
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The perturbation added to L° is just what is needed to snap the bond
at Rv According to Dyson's equation, ref. 16, p. 98, the Green function for
LMs

with

When not just one but M bonds Mi • • • RM have been snapped, then

with

and

with the matrix elements of HM being restricted to the subspace spanned
by Rl--RM, and [ 1 — HM~\~' the MxMmatrix inverse computed in this
same space. Equation (15) is the main formal result upon which subse-
quent computations are based.

The patterns of broken bonds of interest are those such as in Fig. 1;
that is, a line of M broken bonds reaching from (0, 1) to (0, M). The
stability of a solution of this type with M broken bonds is determined by
using Eq. (15) to compute the displacement MJ^, RO = (0, 0). If w^ < 1 while
ugm > 1 for 1 ̂  m ^ M, the solution is consistent and stable. If it turns out
that «j?0> 1, then a kink with M broken bonds is not stable, and the kink
must spontaneously extend moving the crack forward.

The location of mass points when M bonds have broken is therefore,
according to Eq. (13), and the analogue of Eq. (8),
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Some simplifications occur in computing w^, which is

It is legitimate to insert X f = , ^ m K ^ m | as a complete set of states
because tM only has nonzero matrix elements within this set of states. The
first term on the right of Eq. (17) is just «£, the height of the masses right
along the crack line for the straight crack. In addition, since G° is transla-
tionally invariant along the m direction, it must also be true that

since Rm lies somewhere along the crack line. Therefore

The condition for a kink of M broken bonds to be stable against further
extension is therefore

Written in this fashion, it looks as if A should just cancel on both sides of
Eq. (20), but remember that the driving force A is proportional to UN, and
that all the displacements ug are proportional to UN and hence A. For this
reason [MQ/^] is a constant, independent of A, and Eq. (20) properly
reports the upper load under which a kink is stable.

4. COMPUTING ENERGIES

Having determined the locations of all the mass points when various
numbers of bonds have been snapped, it is next necessary to find the
energies of the configurations. Given ug, and remembering that every point
ug has a mirror image at — u$ the energy is



there is a first term that vanishes when each ug relaxes to the equilibrium
position UN, and a second that counts the number of broken bonds. The
difference in energy between a crack line with M extra broken bonds and
a straight crack line is
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Multiplying Eq. (2) by ug and summing over R allows Eq. (21) to be
rewritten in the simpler form

where dug is the change in location of mass points between the two con-
figurations. To determine dug, note that the first term on the right hand
side of Eq. (16) is just u%, the configuration of a straight crack, and the
remaining term must be dug. Therefore

To obtain Eq. (26), make use of Eq. (18).
One final computation is needed. In order for a kink of length M — 

to turn into a kink of length M, the bond at R = {0, M) must be broken.
There is a transition state involved in the breaking process if one considers
that the force on the mass point does not pass immediately to zero when
ugM reaches 1, but passes continuously but rapidly as ugu passes 1. As the
force drops, there exists some value FM between 0 and 2 for which the
system is in unstable equilibrium with the bond poised on the edge of
breaking. A solution of this type is obtained by returning to Eq. (16) and
writing



the leading factor of two accounts for the energy needed to move the
mirror image at ~ugM downwards.

The energy surfaces in Fig. 2 were produced by using Eq. (26) to find
the energies of equilibrium kink configurations of length M and plotting
them at position M, then adding the extra energy given by Eq. (29) to see
how much more energy was required to surmount the barrier leading to a
kink of length M + 1, and plotting this barrier energy at M+ 1/2.

APPENDIX: COMPUTATION OF G°

Consider a system that is infinite in the l direction, and periodic in the
m direction, with period K. For a straight crack, the equations are inde-
pendent of m, so it is profitable to Fourier transform the operator L° in the
m direction. Let

Then

Finally, the extra energy needed in raising the force at RM from zero to FM

so as to drag the mass point from uM to 1 is

The force FM needs to be chosen so that Wj?M= 1, since this bond is raised
just to the breaking point. Let uM be the equilibrium height of the mass
point at RM when M — 1 bonds have been broken. It must always be less
than 1 for a stable kink. Then

Marder522



Energies of a Kinked Crack Line 523

Since L° is diagonal in the k basis, the problem is reduced to finding the
inverse of a one-dimensional operator depending on l. The equation that
needs to be solved is

Let

and let a± and fi± be the solutions of Eq. (34) with a+ > 1, a_ < 1, and
similarly for /?±.

The equations determining G° are

The four unknown coefficients are determined by writing Eq. (32) out
explicitly for l = l' + 1, l = l', l = 0, and l = - 1, giving

Writing out Eq. (32) for l = 0 and l= — 1 gives

l' = 0, or l' = –l:

/'>0:
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Writing out Eq. (32) for l = 0, l= –1, l = l', and l = l' – 1 gives

Once G\\v has been found, G° is computed from

Finally, it should be observed that the shape of the unperturbed crack,
u% is not most conveniently computed from Eq. (8), but instead may be
found directly. The equation for it is

with F and F' determined by

The figures in this paper were carried out with K = 512 and N = 1000.
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